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Abstract

An approximate solution is presented to the seismic inverse

problem for two-dimensional veloci ty variations . The solution is

given as a multiple integral over the data observed at the upper

surface. An acoustic model is used and the reflections are assumed

to be sufficiently weak to allow a “l inearization” procedure in the

otherwise non-linear inverse problem. Synthetic examples are

presented demonstrating accuracy of the method wi th dipping planes

at angles up to 45° and with veloci ty variations up to 20%. The

method was also tested under automatic gain control , in which case

velocity estimates were lost but the method nonetheless sucessfufly

migrated the data.
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Introduc tion

In recent papers (Ble istein and Cohen , 1977; Cohen and Bleistein ,

1977), the authors have shown that closed form approximate solutions

for the velocity (or a velocity related quantity ) profile can be

obtained for a wide variety of wave propagation equations. “Closed

form,” as used here, means that the velocity profile (depth section)

is obtained by direct processing on the observed data (time section)

itself; i.e., by performing weighted quadratures on the data.

In this paper we present an approximate solution to an inverse

problem often used in seismic modeling . It is assumed that the

velocity in the subsurface varies in only two dimensions , verticall y

and laterally. A line of point sources is set off and the backscattered

signal is observed.t This is the mathematical idealization of

sunination of common depth—point (CDP) traces. An approximate integral

equation is derived for the variation in velocity from some known

reference value. When that reference value is a cons tant, the

integral equation has a closed form solution for the two-dimen!ional

velocity variation .

The simplifying assumptions which lead to the closed form solu-

tion presented here are as follows . Firstly, it is assumed that the

acoustic wave equation adequately describes the subsurface wave pro-

pagation (although In the first paper cited above Inversion for

1~With a planar array of backscatter observations, the analys i s can
be extended to yield an approximate solution to the three-dimensional
inverse problem; I.e., to find a veloci ty that varies in all three
dimensions.
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elastic wave propagation was discussed). Secondly, the subsurface

velocity variations must be small. This justifies linearization of

an otherwise non-linear problem. Even this “sma l lness ” limitation is

not overly restrictive as can be seen from one of the examples below

in which a 20% velocity variation was successfully migrated and

estimated. In fact, the real world data restrictions--noise , attenu-

ation , discretization and finiteness of observations , etc. ,--are

usually of greater concern than this theoretical linearization

assumption.

This second assumption has signigicant theoretical consequences,

namely, that reflecting interfaces cause “weak” reflections and the

(downward) transmitted wave may be taken to be the response to the

source in a homogeneous (constant veloc ity ) medium.

A computer program was developed to implement our result on

synthetically generated data. The synthesis embodies several real

world restrictions , namely:

(I) the observations are made only at diecrete points
on the line ;

(ii) the observations are made only over a finite length
of the line ;

(iii) the observations are band limited In frequency.

For the examples here, In (1) the spacing between shot-receiver

points was taken to be

= 100 ft.; (1)



in (ii), the line was taken to extend from -L to L , wi th

L = 4,000 ft.; (2)

in (iii) the bandwidth f f f.~. was used wi th

= 4f_ = 24 hz. (3)

An important feature of the direct inverse procedure used here

is that it does not break down as the dip angle of reflecting sur-

faces is increased. Th is can be seen in the examp les below of

dipping planes with dip angles up to 45
g. Thi s i s so because thi s

direct Inversion procedure Is formulated from propagation governed

by the wave equation itself, rather than from a parabolic approxi-

mation to the wave equation. Parabolic approximations are known to

“flatten” the dip of wave fronts (Claerbout, 1976) and consequently

flatten the dip of profiles, as well. This is demonstrated with

three-dimensional examples In the above—cited paper by Bleistein and

Cohen (1977) in which a three—dimensional inversion procedure, starting

from the parabolic approximation , i s presented.

This feature of accuracy at all dip angles is also present for

migration schemes based on the wave equation itself--see, for examp le,
French (1975), Lam er and Hatton (1976), Schneider (1970). However,

as migration techniques, these methods produce only a subsurface

profile--i.e., layer mapping but no velocity estimates. The velocity

3
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profile produced by the direct inversion method described here, pro-

duces velocity estimates as well a~ a layer mapping . These velocity

estimates require true amplitude information . When such information

is not available--e.g., if automatic gain control has been applied--

the direct invers i on technique simply migrates the data to produce a

depth section without a velocity estimate .

The linearization procedure used in the derivation of our

inversion procedure is often referred to as the Born approximation

(Morse and Feshbach , 1953). It has been successfully exploited in

the past to yield approximate solutions of other inverse scattering

prob lems . For exampl e, Prosser (1969, 1976) has shown that in

certa i n cases , this approximation leads to a first iterate in an

i teration scheme to solve certain “refraction” or “potential”

inverse problems. Three essential requirements of his proof are

that (I) the scattering potential or reflectivity be “sufficiently

weak;” (ii) the scattering region be finite in extent and (iii) the

scattering potential or fractive index be “smooth ” i n a manner

prescribed by certain decay estimates on its spatial Fourier transform

at infinity .

The condition (1) is assumed by us, as well. Conditions (ii)

and (lii) are simply not true in seismic problems . In particular ,

condition (ii) leads to a particularly simple first approximation of

the Index of refraction , namely, that its three-dimensional spatial

Fourier transform Is proportional to the backscattered data. The

lack of transverse confinement heads to the much more difficult

inversion formula given by equation (9), below.

4



Analysis

It is assumed that the medium to be probed supports acoustic

waves wi th wave speed v(x , z). Here x i s the transve rse var i abl e

and z is the depth vari able (measured positive downward from the

upper surface). Thus , the medium has velocity variation in one

transverse di rection only .

The governing equation for the wave field ii(t, x , y, z) i s

V2U - v~ ~~~~~~~~ 
= - 6(x - ~

) 6(y)~(z)o(t)~ U 0, t < 0. (4)

Here ~ 2 is the three-dimensional Laplacian and ~s denotes the Dirac
delta function . At each point , x = 

~~~, y = z = 0, on the source-

rece iver l ine , an impulsive source is set off and the backscattered

field at (t, ~~~, 0, 0), denoted by Us(t, p), i s observe d . Each suc h

experiment (i.e., for each ~
) is set off separately. In each case,

the “time clock of observation” Is reset so that t = 0 corresponds to

the time when the pulse is set off. -

This formulation dispenses wi th the upper surface as a boundary .

Alternatively, one could rep lace (4) by a homogeneous equation i n

z > 0 and prescribe a boundary condition at z = 0 which contains the

source term. In the simplest model of this type one would prescribe

~U/az as an impulse at each surface point. The consequent change

Induced by this simplest model is to Introduce multipliers of 2 and 4

in the results stated below, while not changing the substantive results

at all. Thus , we proceed wi th (4) as the governing equation.

5
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Wi th c denoting a constant reference speed , we define the

variation in v
2(x , z) by the equation

— — 2v (x , z) = c [1 + ct(x, z)] . (5)

By using the methods in Bleistein and Cohen (1977), the following

*
integral equation may be derived fora(x , z):

f H(~j -~~)Idz I dx ct(x,z) __________ = 
~~ e(t,~~) . (6)

•
~ ?~r. 

/ (~~) -

Here, H is the Heaviside function ,

p = /( x—~
)2 + Z 2  (7)

and

= - (4~c)2 Jdt(i-t)Us(t~~). (8)

The integra l equation can be solved by transform techniques .

The resul t is

* See Appendix A.
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a(x, z) = ~~~ Jd~ fdk fdk fth fdt k(T
2 -Tt )

.U (t,~)exp{2ik (x— ~) - 21k z + iw r }  ; (9)S 1 3

w = c[sqnk ]v’k’  
+ 

k3~ (10)

Thi s is a formula whi ch reproduces a(x, z) by direct processing of

the observed data itself. In fact, this is not the formula to be

used for computer implemen tation. Instead , the integrand is

multiplied by -21k to yield a formula for a = ac~/~z.3

For a layered medium , ct(x, z) is a constant in each layer

while a~ is proportional to a sum of Dirac delta functions which

peak on the interfaces between the layers. Since band limited

delta functions are much easier to recognize than band limited

step functions, it is far more desirable to process data for

a than for a. An analyti cal development of these ideas can be

found in Mager and Bleistein (1976). in particular , it is shown

in that paper how to estimate the magnitude of the jump in a at

a discontinuity in terms of the output of the band limited deri-

vative, a . It Is this analysis that provides our velocity esti-

mates from this band limi ted data.

7
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Examples

To take account of the constraints cited earlier in this paper ,

the multiple integration in (9) is carried out as follows . The

time domain is truncated at the maximum time of “reliable ” observa-

tions Us(t, ~). The step size in the time interval is the sampling

rate. The integrals in wave vector are restricted to an annulus

consistent wi th the frequency constraint , i.e.,

2wf 
_________ 

2lTf~- 

< 1 k 2 + k 2  <

1 3

The integration over ~ is truncated to the interval (-L, L) and

the step size ~ (in this paper , 100 ft.) is used for this

quadrature.

A computer algori thm has been developed by the authors to

generate ct in accordance wi th (9) and the discussion above.

Synthetic data U5(t, ~
) was generated for various subsurface profiles

and then the data was processed to produce a’.

In Figures 2, 3, and 4 are the results for profiles of the type

in Figure 1 wi th 0 being 15°, 3Q0 , and 45° respectively. The angle of

inclination of the interface is accurately reproduced in the region

bounded by the dashed lines of Figure 1. The velocity c in this case

was 5,000 ft./sec., ~c was 250 ft./sec. A typical value of lxc

estimated from the output was 249.7 ft./sec. In this type of

_
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configuration , the error is virtually linear in Ac and hence these

percentage errors will be maintained for much hi ghe values of A ’ .

For these examples , one can generate the synthetic data

analytically and calculate the integral in (9) asymptoticall y, under

the constraint (ii). The result of that analysis is completely con-

sistent wi th the numerical output , both as regards the location of

the interface and the estimate of Ac.

Figure 5 shows a time section for an anticline. Figure 6 is the

result of direct inversion and gives virtually the exact model ,

which was a circular anticline. For example , the top of the actual

circle was located at 1,500 ft. and our output yielded arl estimate

of 1,502 ft. The actual jump Ac at this point was again 250 ft./sec.;

the estimate from our output was 247.1 ft./sec. In the middle of

the flanking plane (x = 2,700 ft.), the actual location and jump

were 2,000 ft. and 250 ft./sec., respectively; our estimates were

2,000 ft. and 248.1 ft./sec.

Figure 7 is the time section for a circular syncline. Figure 8

is the result of our direct inversion procedure. Depth and Ac at

the bottom of the circle were 3,472 ft. and 250 ft./sec.; direct

inversion yielded 3,472 ft. and 249.3 ft /sec., respectively. At

x = 3,600 ft. (on the flank plane) the depth and AC values were

2,000 ft. and 250 ft./sec.; direct i nversion yielded 2,010 ft. and

253.6 ft./sec.

9
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Figure 9 shows a subsurface configuration for which synthetic

data was graciously provided to us by the research group at Marathon

Oil. The time section provided by them is depicted in Figure 10;

Figure 11 is the result of our direct inversion procedure and

Figure 12 shows our estimate from the output of various relevant

quantities in the model . The lower two sets of numbers exhibit

errors of less than 4%, while above that level , the errors are less

than 1%.

Automatic gain control was applied to the input and the data

was again processed by our inversion procedure. The output was

indistinguishable from Figure 11. In this case, the output does

not provide velocity estimates, and thus our inversion procedure

becomes a migration procedure.

10



Conclusions

We have derived an approximate solution to the inverse problem

for the velocity in an Inhomogeneous medium which supports acoustic

waves. The approximations made are often used in modeling the

inverse problem in seismic exploration and can be found also in the

references cited earlier , as well as in many other papers . A com-

puter implementation on synthetic data under a number of realistic

constraints has also been carried out.
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APPENDIX

The derivations of equation (6) will be presented here. To

begin , the function

U 0(t, x , y, z) = 5(t — r/c)/(4irr),

r =  v’ x2 +y2 + z2 (Al)

is introduced . This is the Green ’s function for the “wave operator ”

in (4) when v is replaced by c, defined in (5).

We form the expression,

U0(1 - t, x -
~~~~
, y, z)[c12 - c 2 U(t, x , y, z)

• - U(t, x , y, z) [V
2 _ c 2 

~~~ 
U o (T  - t, x • 

~~~ , y, z),

and integrate over space-time. The integral can be shown to be

equal to zero by Green ’s theorem. An alternative result is obtained

by noting the following:

[V
2 - c 2 

~~
-] U~(~ - t, x - ~~~, y , z) = -~(x - ~)a(y)o(z)

Uo = U ot = O
~~

t r ;  (A2)

14
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[
~~2 - c ’2 

~~
-] IJ(t , x , y, z) = -6(x - ~)S(y)c5(z)6(t) + ~~~

U = U ~~= O , t = O .  (A3)

Thus , it fol lows that

O = fdt fdxdYdt{U o(T - t, x - 
~~~, y, z) [-o(x - (y)ó(z)6(t)

a

+ U(t, x , y, z)ô(x .~)o(y)~(z)o(T - t)} . (A4)

By using the Dirac delta functions and the initial and final condi-

tions in (A2, 3). this result may be simplified to the following:

fdt fdxd~dz a U0 .~~~. (A5)

= — c2U(T, ~~~, 0, 0) = - uS(T , 
~
). (A5)

Here, the last expression defines U5(r ,~) as used in this paper.

Integration by parts In (A5) and use again of the initial and final

conditions in (A2, 3) places the second time derivative ~
2/~t

2

on Uo instead of on U. This can then be replaced by a second time

15
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derivative with respect to t : 32/aT 2 . A double integration with

respect to t and an interchange of orders of integration then

yields

fdtfdxdydz a Uo (t - t, x - 

~
, y, z)U( t, x , y, z)

= - c2 f (T-  t)U5(t, ~~
) dt. (A6)

If (A3) is formally solved by perturbation methods, then to leading

order

U(t, x , y, z) = U0(t, x — ~ , y, z) (A7)

with the correction term of order a. Substituting (A7) yields the

equation ,

fdtfdxdydz a(x, z) Uo (T- t, x -
~~~~, y, z)Uo(t, x - 

~
, y, z)

= _c2f ( T t)Us (t , ~)d~ , (A8)

with the correction to the integrand on the left of the order of a2 ,

which Is negligible for a small. With U given by (Al), the t and y

IntegratIons can now be carried out to yield (6).
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